FOMO2021 Abstracts

Meyer, Bernd — Transfering entanglement from spin to momentum space

Entanglement has been generated in different atomic systems to improve the sensitivity of phase estimation measurements [1, 2]. However, it is challenging to make use of this entanglement in inertially sensitive atom interferometers.

One approach is to generate the entanglement directly in momentum space using nonlinear interactions in Bose-Einstein condensates [3, 4]. In our approach, we first create highly entangled states in spin states and then transfer this entanglement to momentum states. This technique generates entanglement in well separated momentum modes and is therefore an appropriate candidate for future entanglement-enhanced quantum sensors [5].
[1] L. Pezze, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein, Quantum metrology with nonclassical states of atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[2] S. S. Szigeti, O. Hosten, and S. A. Haine, Improving cold-atom sensors with quantum entanglement: Prospects and challenges, Applied Physics Letters 118, 140501 (2021).

[3] S. S. Szigeti, S. P. Nolan, J. D. Close, and S. A. Haine, High-Precision QuantumEnhanced Gravimetry with a Bose-Einstein Condensate, Phys. Rev. Lett. 125, 100402 (2020).

[4] R. Corgier and N. Gaaloul, A. Smerzi, and L. Pezze, Delta-kick Squeezing,
arXiv:2103.10896 (2021).
[5] F. Anders, A. Idel, P. Feldmann, D. Bondarenko, S. Loriani, K. Lange, J. Peise,
M. Gersemann, B. Meyer, S. Abend, N. Gaaloul, C. Schubert, D. Schlippert, L.
Santos, E. Rasel, and C. Klempt, Momentum entanglement for atom interferometry,
arXiv:2010.15796 (2020).