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I. BACKGROUND, MOTIVATION, AND OUTLINE

This mini-lecture is intended to introduce you to how atomic physicists prepare ultracold atoms
in optical lattice potentials. Many of the concepts required to understand this are at the heart of
the control of atoms with laser light, which, in many ways, is the starting point for a number of
interesting problems in quantum sensing, simulation, and computing with neutral atoms.

This lecture assumes that previous lectures have covered

• Atom trapping in laser fields (i.e., dipole trapping), including Gaussian beam propagation

• Cooling bosonic atoms down to Bose-Einstein condensation (BEC), including The Gross-
Pitaevskii equation for describing ultracold bosons

The lecture is outlined as follows:

• First, we will define what an optical lattice is, as well as a Schrödinger equation for (single)
atoms in an optical lattice.

• From this, we will derive the Bloch states and the band structure they give rise to, as well as
the Wannier states that are comprised of sums of Bloch states. The utility of each of these
representations will be elucidated.

• Finally, we will discuss the theory of BEC in optical lattices, particularly the Bose-Hubbard
model.

Thus, at the end of this lecture, a student should be able to describe what an optical lattice is,
how basic lattice potentials are made, and what the wavefunctions of atoms trapped in these lattices
look like in the limits of low and high lattice depths.

Note that most of the content in this lecture is derived from Markus Greiner’s PhD thesis [1]. It is
a fantastic starting point for anyone looking to understand ultracold atoms in optical lattices. This
reference also covers the basics of the aforementioned prerequisites (on atom trapping and cooling),
and the interested reader can go into more depth by diving into the references therein.

Finally, if you have any questions regarding this lecture and the material contained within it (or
if you find any typos or inaccuracies!), please email me at c.weidner@bristol.ac.uk.

II. THE ATOM WAVEFUNCTION IN AN OPTICAL LATTICE

If we take a single-mode, Gaussian laser beam and reflect it back onto itself, the laser (of wavelength
λL) interferes with itself and creates a sinusoidal pattern of nodes and antinodes, with each node
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separated by λL/2. If we assume that the laser beam is relatively large, we can neglect variations in
the potential due to the finite Rayleigh length of the laser. Restricting ourselves to one dimension
(the direction of propagation of the laser beam), our potential takes the form

V (x) = −VL cos2(kLx) (1)

where kL = 2π/λL and we have shoved all of our prefactors into VL. We can also write this in the
suggestive form

V (x) = −VL

4
(e−2ıkLx + e2ıkLx + 2). (2)

We can use this to define a Schrödinger equation

Hφ(n)
q (x) = E(n)

q φ(n)
q (x), (3)

where

H =
p2

2m
+ V (x), (4)

and the Bloch state

φ(n)
q (x) = eiqx/h̄u(n)

q (x), (5)

with u
(n)
q (x) being a function with the same periodicity as the lattice. As will become clear in a

moment, we refer to q as the quasimomentum and n will define our energy band. Both are needed
to uniquely define a Bloch state in an optical lattice.

If we plug Eq. (5) into Eq. (3), we get

HBu
(n)
q (x) = E(n)

q (x)u(n)
q (x), (6)

where

HB =
(p+ q)2

2m
+ V (x). (7)

From this, it should be clearer why we refer to q as the quasimomentum; this quasimomentum will
define a Brillouin zone that is periodic with period 2h̄kL. If you’ve ever had any solid-state physics,
you are probably aware of this concept.

The next step is to expand both our potential and u(n)
q (x) in a Fourier series. That is

V (x) =
∑
r

Vre
2ıkLrx, (8)
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and

u(n)
q (x) =

∑
`

c
(n,q)
` e2ıkL`x. (9)

This gives rise to the following Schrödinger equation:[
(p+ q)2

2m
+ V (x)

]
u(n)
q (x) =

∑
`

(2h̄kL`+ q)2

2m
c
(n,q)
` e2ıkL`x +

∑
`,r

Vre
2ıkL(r+`)xc

(n,q)
` . (10)

This looks kind of cumbersome, but if you remember the suggestive way in which we wrote V (x) in
Eq. (2), there are only three terms in the Fourier series. Furthermore, the last term in the series
(with no exponential term) corresponds to an energy offset which can be set to zero.

Therefore, defining the photon recoil energy

Er =
h̄2k2

L

2m
, (11)

and setting the lattice depth to be V0 = VL/Er we can write Eq. (10) as∑
`,`′

H`,`′c
(n,q)
` = E(n)

q c
(n,q)
` (12)

where

H`,`′ =



(
2`+ q

h̄kL

)2

Er if ` = `′

−V0

4 if |`− `′| = 1

0 else,

(13)

and we have rescaled the potential so the DC term is set to zero. This is just a matrix (albeit,
right now, an infinite matrix, because we haven’t put any restrictions on `). In practice, if we are
only concerned with the lowest energy states (which is typically the case when dealing with ultracold
bosons), we can truncate ` such that −5 ≤ ` ≤ 5. Then, for any given values of q and n, we can define
a matrix and solve for its eigenvalues, which give us the eigenenergy of the state; these are plotted for
various values of V0 in Fig. 1. The eigenvectors are the c(n,q)

` that can be used to get the eigenstates
of the system as a function of x by using Eqs. (5) and (9), which are plotted in Fig. 2(a). As will
become important later, these states are periodic and thus delocalized in position, corresponding
to an atom wavefunction spreading throughout the lattice, and because of this periodicity, they are
quantized (localized) in momentum space.

However, we often want to prepare states such that they are localized to a given lattice site. These
states, in contrast to the Bloch states, are localized in position and thus delocalized in momentum.
This delocalization gives us a clue as to how to construct such states in that we need to sum over
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(a) V0 = 10Er (b) V0 = 20Er

FIG. 1: Starting from the ground band n = 0, even (red) and odd (blue, dashed) Bloch bands
plotted as a function of quasimomentum q within a single Brillouin zone for lattice depths of (a)
V0 = 10Er and (b) V0 = 20Er. The lattice depth is shown via a black, dotted line. We see that as
the lattice depth increases, the lowest bands flatten out, and indeed, for a large lattice depth, these

would approach the eigenenergies of a harmonic oscillator. Above the lattice energy, the gaps
between the bands increasingly vanish due to the fact that the atom is effectively moving as a free

particle in the continuum.

(a) (b)

FIG. 2: The (a) position- and (b) momentum-space representations of the ground Bloch states of
an optical lattice with V0 = 10Er with q = 0 (red) and q = h̄kL (blue, dashed). The plots in (a) are
of the real part of the wavefunction and are normalized such that the maximum amplitude of the
state is one; the imaginary part of the wavefunctions are zero. For a spatial reference, the function

cos(2kx) is plotted (blue), representing the lattice. In plot (b) the relative population in each of
the 2nh̄kL states (for integer n) is shown by the height of the peaks. This figure thus shows how

the Bloch states are delocalized in position, but localized in momentum.
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(a) V0 = 3Er (b) V0 = 10Er

FIG. 3: Probability density of the Wannier function (red) for a lattice (black, dashed) of depth (a)
V0 = 3Er and (b) V0 = 10Er as a function of x, showing how the wavefunction is much more
localized for a deeper lattice. Wannier states localized to adjacent wells are shown with blue,

dashed lines; the overlap of these states can be broadly related to a tunneling matrix element, as
we shall see.

Bloch states for a given band n but with different quasimomenta. Thus, within a given band, we
can define the so-called Wannier states localized to a given lattice site (with a minimum at xj) as

wn(x− xj) = N 1/2
∑
q

eıqxj/h̄φ(n)
q (x) (14)

where N is a normalization factor. This works as-written for the lowest band in that we get a
very nicely localized state (Fig. 3), but for higher bands, there is a phase freedom in how we write
each φ

(n)
q (x) such that φ → eıΦφ. Thus, when performing the sum in practice, the states will be

localized to one degree or another in the lattice. The definition of maximally localized Wannier
states allows one to define the phase freedom Φ(q) such that the higher-excited Wannier states are
localized to a given lattice site; more details are beyond the scope of this lecture but can be found via
a literature search. Furthermore, while it may look like the Wannier states are basically Gaussians,
the Gaussian has a larger tail and will lead to inaccuracies in calculations of quantities like tunneling
matrix elements.

III. BECS IN OPTICAL LATTICES

Now we have set up the required background for discussing how BECs look in optical lattices.
Note that for this section, we assume that we are working with a three-dimensional cubic lattice,
and this will be represented by the vector nature of the spatial coordinate ~x. Due to their low
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temperature (about 100 nK in a typical rubidium-87 system), BECs are excellent for use in optical
lattices, because they are straightforward to load into the lowest bands of the lattice. As we have
seen before, we can produce a BEC in either a magnetic trap or an optical trap, and from there,
we can simply overlap our lattice lasers with the BEC cloud and ramp up the lattice in such a way
that the BEC atoms are loaded into the lowest bands. Specifically, we have to satisfy the specific
adiabaticity criterion [2], representing a state in band n with quasimomentum q as |n, q〉:

| 〈n, q| d/dt |0, q〉 | << |E(n)
q − E(0)

q |/h̄. (15)

For low lattice depths, the Bloch spectrum (similar to Fig. 1) will be effectively that of a free
particle, which makes one think that the gap between bands would be deleteriously low, making this
an exercise in futility. However, at q = 0, there is quite a large gap E(1)

0 −E
(0)
0 ≈ 4Er. Therefore, in

practice, if one is working near zero quasimomentum, this criterion is straightforward to meet if one
uses an exponential ramp when turning on the lattice lasers (empirically, the author has also found
that a linear ramp will do in a pinch).

How do we describe BEC in optical lattices? For shallow lattices, the Bloch representation works,
but the mean-field of the condensate changes the system such that the effective lattice depth (ex-
pressed in units of Er) becomes [3]

Veff =
V0

1 + C
, (16)

where C = gn0/Er for a cloud with volume density n0 and

g =
4πh̄2as
m

. (17)

However, for ultracold atoms in the lowest band of deeper lattices, one typically works in the basis
of Wannier functions and thus uses the Bose-Hubbard Hamiltonian (although, in principle, one could
use either basis regardless of depth, as long as one restricts themselves to the lowest band). For
this, we will move from one dimension into 3D and assume that we have a cubic lattice of the form
Eq. (1) in all three Cartesian dimensions. In second-quantization, we can describe the Hamiltonian
of the atoms in a Bose-Einstein condensate as

Ĥ =

∫
d~rψ̂†(~r)

(
− h̄2

2m
∇2 + V (~r)

)
ψ̂(~r) + g

∫
d~rψ̂†(~r)ψ̂†(~r)ψ̂(~r)ψ̂(~r) (18)

where as is the s-wave scattering length of the atom (for Rb-87 this is as ≈ 95a0, where a0 is the
Bohr radius).

We can turn this into the Bose-Hubbard Hamiltonian by taking

ψ̂(~r) =
∑
j

âjw(~r − ~rj) (19)
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where the minima of the lattice potential are at the (periodic) positions ~rj and âj and â†j are the
annihilation and creation operators for an atom on site j. Plugging this into Eq. (18) gives the
Bose-Hubbard Hamiltonian

ĤBH = −J
∑
〈j,j′〉

â†j′ âj +
∑
j

U

2
n̂j(n̂j − 1), (20)

where n̂ = â†â is the number operator. The first term describes tunneling from site j to site j′,
where the brackets indicate that j must be adjacent to j′ (thus, this Hamiltonian describes only
local interactions). The tunneling matrix element J can be written as

J =

∫
d~xw0(~x− ~xj)

[
− h̄2

2m
∇2 + V (~x)

]
w0(~x− ~xj′), (21)

effectively representing the overlap between the Wannier functions in adjacent sites j and j′. For
lower lattice depths, this becomes larger, vanishing exponentially as the depth increases [4]. A plot
of J and U (using the methods developed in Ref. [4]) as a function of the lattice depth can be found
in Fig. 4(a). The second term in Eq. (20) represents the on-site interaction energy that an atom
feels due to the other atoms on lattice site j. This term can be written as

U = g

∫
d~x |w0(~x− ~xj)|4. (22)

At low lattice depths, the tunneling term dominates the dynamics of the system, but as this term
vanishes at increasing lattice depth, the on-site interaction term U dominates. Thus, for high lattice
depths, atoms will prefer to localize to lattice sites, while at lower lattice depths, atoms will prefer
to tunnel around, as the energy penalty paid by having multiple atoms on a single site will be
overwhelmed by the tunneling term.

IV. PREPARING SUPERFLUID AND INSULATING STATES IN A LATTICE

The material in the last section was admittedly written somewhat suggestively, and we will find
that the material here will likely fall out somewhat intuitively from the previous suggestive material.
In a lattice, there are effectively two phases defined by whether or not the U or J terms are dominant
in Eq. (20), and the knob that one turns to move between these states is the lattice depth.

More precisely, as U/J tends towards zero (at low lattice depths), we can write the many-body
ground state of N bosons on a lattice of M sites as a product of identical Bloch states. This can be
written as [1]

|ΨSF〉 ∝
( M∑

j=1

â†j

)N

|0〉 , (23)
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(a) (b)

FIG. 4: (a) Plot of the tunneling matrix element J (red) and the on-site interaction matrix
element U (blue, dashed, see Ref. [4] for analytics) as a function of the lattice depth V0 (in units of

the recoil energy Er), showing the exponential decay of the tunneling matrix element J as
mentioned in the main text. The matrix element U rolls off as a function of the lattice depth but
increases rapidly at lower lattice depths. (b) The ratio J/U , with the phase transition point 5.8z

for z = 6 (the case of a 3D lattice) marked as a dotted black line. This marks the transition
between the superfluid and the Mott insulating states.

which describes a coherent state on a given site. However, I find it far more instructive to simply
write (for a given quasimomentum)

|ΨSF〉 ∝
M∏
j=1

φ(0)
q (x), (24)

which is somewhat simplistic, but it exemplifies that the ground state of this superfluid state is simply
the product of a set of identical Bloch states. As such, this state has a well-defined macroscopic
phase, is localized in momentum, and we call this the superfluid state. However, as one can see from
Eq. (23), the atom number per site is uncertain and will be distributed in a Poissonian manner, as
we know from the behaviour of coherent states. This state has been used for a number of things,
among them, the author was able to develop a quantum sensor via atom interferometry [5].

As we increase the lattice depth, the ratio U/J increases, as shown in Fig. 4(b), and as we approach
U/J >> 1, atoms tend to localize to single lattice sites. For a cubic lattice, the phase transition will
occur around U/J = 5.8z, where z is the number of neighboring sites (for a 3D lattice, z = 6). In
practice, this occurs around V0 = 20Er for a 3D lattice. For our simple model, the system will tend
towards one atom per site, and this can be written as

|ΨMI〉 ∝
M∏
j=1

â†j |0〉 . (25)
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This so-called Mott insulating state does not have a coherent macroscopic phase (because the atoms
simply do not talk to one another), but the atom number per site is very well-defined. This is an
excellent starting point for many quantum simulators, as it provides a clean means of preparing one
atom per site.
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