# Weak values in the study of quantum correlations





Santiago Zamora July/20/2021

## Objective

 Determine the utility of weak values to study quantum correlations in general states.

## Structure

1. Weak measurements and weak values

2. Quantum entanglement criterion

3. Further results and Conclusions

#### 1. Weak measurements and weak values

Ancilla scheme



#### 1. Weak measurements and weak values

Weak measurements with postselection



$$\hat{U} = exp(\frac{-i}{\hbar}g\hat{S}\otimes\hat{N}), \ \ g = \int_{t-\epsilon}^{t+\epsilon}k(t')dt'.$$

#### 1. Weak measurements and weak values

The state of the apparatus after the postselection is

$$\hat{\mu}_f = \hat{\mu}_0 + \frac{2g}{\hbar} Im(\langle \hat{S} \rangle_w \hat{N} \hat{\mu}_0).$$

With the definition of the weak value for pure states

$$\langle \hat{S} \rangle_w = \frac{\langle f | \hat{S} | s \rangle}{\langle f | s \rangle},$$

## 2. Quantum entaglement criterion

Entanglement in pure states of bipartite systems (A|B)

$$|\psi\rangle = |\psi\rangle_A \otimes |\psi\rangle_B$$
.

In the configuration space

$$\psi(\mathbf{x}_A, \mathbf{x}_B, t) = \psi_A(\mathbf{x}_A, t)\psi_B(\mathbf{x}_B, t),$$

Separability conditions for amplitude and phase

$$\rho(\mathbf{x}_A, \mathbf{x}_B, t) = \rho_A(\mathbf{x}_A, t)\rho_B(\mathbf{x}_B, t),$$

$$S(\mathbf{x}_A, \mathbf{x}_B, t) = S_A(\mathbf{x}_A, t) + S_B(\mathbf{x}_B, t).$$

## 2. Quantum entaglement criterion

Consider a 2-particles system in the pure state

$$\psi(\mathbf{x}_1, \mathbf{x}_2, t) = \sqrt{\rho(\mathbf{x}_1, \mathbf{x}_2, t)} e^{iS(\mathbf{x}_1, \mathbf{x}_2, t)}.$$

If you calculate

$$\begin{split} \langle \hat{\mathbf{p}}_{i} \cdot \hat{\mathbf{p}}_{j} \rangle_{w} &= \frac{\langle \mathbf{x}_{1} \mathbf{x}_{2} | \mathbf{p}_{i} \cdot \hat{\mathbf{p}}_{j} | \psi \rangle}{\langle \mathbf{x}_{1} \mathbf{x}_{2} | \psi \rangle} \\ (i \neq j \in \{1, 2\}) &= \frac{\hat{\mathbf{p}}_{i} \cdot \hat{\mathbf{p}}_{j} \psi}{\psi} \\ &= \frac{\hat{\mathbf{p}}_{i} \cdot \hat{\mathbf{p}}_{j} \psi}{\psi} \\ &= \langle \hat{\mathbf{p}}_{i} \rangle_{w} \cdot \langle \hat{\mathbf{p}}_{j} \rangle_{w} - \hbar m_{j} (\nabla_{i} \cdot \mathbf{u}_{j} + i \nabla_{i} \cdot \mathbf{v}_{j}), \end{split}$$

## 2. Quantum entaglement criterion

If the state is separable, the last term vanishes:

$$abla_i \cdot \mathbf{u}_j = 0$$
  $abla_i \cdot \mathbf{v}_j = 0$  Sep. in the amplitude Sep. in the phase

The criterion can be given in simple terms if one defines the quantity:

Weak correlation

$$C^{w}_{\hat{A}\hat{B}} = \langle \hat{A}\hat{B}\rangle_{w} - \langle \hat{A}\rangle_{w}\langle \hat{B}\rangle_{w}.$$

In analogy to  $C_{\hat{A}\hat{B}} = \langle \hat{A}\hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle$ 

$$C_{\hat{p}_i\hat{p}_j}^w = -\hbar m_j (\nabla_i \cdot \mathbf{u}_j + i \nabla_i \cdot \mathbf{v}_j)$$

#### 3. Further Results and Conclusions

- One can generalize the entanglement criterion to n-particles system in a pure state. What you obtain then is a bipartite entanglement criterion
- You can generalize the weak correlation to mixed states in two non-equivalent ways. The generalizations allow you to stablish quantum discord criteria
- One of this generalizations has to do wo with the skew information defined by Wigner and Yanase
- Weak values are a useful tool for the study of quantum correlations in general systems

Thank you!